วันศุกร์ที่ 13 พฤศจิกายน พ.ศ. 2552

ปัจจัยบางประการที่มีผลต่ออัตราการสังเคราะห์ด้วยแสง

แสงและความเข้มของแสง
แสงอาทิตย์ที่ส่องลงมายังโลกมีปริมาณแตกต่างกันไปขึ้นกับตำแหน่งบนพื้นโลกและฤดูกาลแสงบางส่วนจะถูกดูดและสะท้อนโดยบรรยากาศที่ห่อหุ้มโลก แสงที่สามารถผ่านบรรยากาศและผ่านมากระทบผิวโลก พืชสามารถดูดกลืนไว้ได้เพียงร้อยละ 40 ในร้อยละ 40 นี้ จะเกิดการสะท้อนและส่องผ่านไปร้อยละ 8 และสูญเสียไปในรูปความร้อนร้อยละ 8 มีเพียงร้อยละ 5เท่านั้นที่พืชนำไปใช้สร้างคาร์โบไฮเดรตด้วยกระบวนการสังเคราะห์ด้วยแสง ส่วนอีกร้อยละ 19 นั้นสูญเสียไปในกระบวนการเมแทบอลิซึมของพืช
มีผู้ศึกษาความเข้มข้นของแสงกับอัตราการสังเคราะห์ด้วยแสงของพืช 3 ชนิด
จากการศึกษายังพบว่าในที่มืดอัตราการตรึงคาร์บอนไดออกไซด์สุทธิเป็นลบ นั่นคือคาร์บอนไดออกไซด์ถูกปล่อยออกมาเนื่องจากการหายใจเมื่อความเข้มของแสงเพิ่มขึ้นจนกระทั่งอัตราการปล่อยคาร์บอนไดออกไซด์จากการหายใจเท่ากับอัตราการตรึงคาร์บอนไดออกไซด์จากการสังเคราะห์ด้วยแสงเรียกจุดที่ความเข้มแสงนี้ว่าไลท์คอมเพนเซชันพอยท์ ( light compensation point )เมื่อให้ความเข้มข้นของแสงเพิ่มขึ้นอัตราการตรึงคาร์บอนไดออกไซด์สุทธิจะเพิ่มขึ้น และเมื่อเพิ่มความเข้มข้นของแสงมากขึ้นเรื่อยๆ จะถึงจุดหนึ่งที่เมื่อเพิ่มความเข้มข้นของแสงแล้วอัตราการตรึงคาร์บอนไดออกไซด์สุทธิจะไม่เพิ่มขึ้น เราเรียกค่าความเข้มข้นของแสง ณ จุดนี้ว่า จุดอิ่มตัวของแสง
เนื่องจากพืชในที่ร่มมีอัตราการหายใจต่ำกว่าพืชที่อยู่กลางแจ้งจึงมีการตรึงคาร์บอนไดออกไซด์สุทธิ เป็นศูนย์ได้ที่ระดับความเข้มแสงต่ำ ดังนั้นพืชในที่ร่มจึงมีไลท์คอมเพนเซชันพอยท์ต่ำกว่าพืชที่อยู่กลางแจ้ง
ในพืชส่วนใหญ่จะมีจุดอิ่มตัวของแสงในช่วงแสงประมาณ 300 – 1000 ไมโครmol ของโฟตอน
คาร์บอนไดออกไซด์
จากการศึกษาของภาควิชาพืชไร่นา คณะเกษตร มหาวิยาลัยเกษตรศาสตร์ พบว่าอัตราการตรึงตาร์บอนไดออกไซด์ของข้าว ข้าวโพด และอ้อย
อุณหภูมิ
1. อัตราการสังเคราะห์ด้วยแสงลดลงเนื่องจากอัตราการหายใจและอัตราโฟโตเรสไพเรชันเพิ่มขึ้นการตรึงคาร์บอนไดออกไซด์จึงลดลงด้วย
2. เมื่อุณหภูมิสูงหรือต่ำกว่าอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงมากๆจะมีผลทำให้สมบัติการเป็นเยื่อเลือกผ่านของเยื่อหุ้มออร์แกเนลล์ต่างๆที่จำเป็นต่อการทำงานของกระบวนการสังเคราะห็ด้วยแสงสูญเสียความสามารถไปด้วยทำให้อัตราการสังเคราะห์ด้วยแสงลดลง
3. เมื่ออุณหภูมิสูงจะทำให้เอนไซม์ที่เกี่ยวข้องกับกระบวนการสังเคราะห์ด้วยแสงเสียสภาพไป
ได้มีผู้ศึกษาพืชเศรษฐกิจที่อายุสั้น เช่น ข้าวโพด ฝ้าย และถั่วเหลือง ซึ่งเจริญเติบโตได้ดีในภูมิอากาศเขตร้อน พบว่าต้องการอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงสูงกว่าพืชที่เจริญเติบโตในภูมิอากาศเขตหนาว เช่น มันฝรั่ง ข้าวสาลี และข้าวบาเลย์ ส่วนพืชที่เจริญในทะเลทรายสามารถสังเคราะห์ด้วยแสงได้ในที่อุณหภูมิ 50 องศาเซลเซียส ส่วนพืชที่เจริญเติบโตในเขตหนาวของโลกที่มีอุณหภูมิต่ำสามารถสังเคราะห์ด้วยแสงที่อุณหภูมิใกล้ 0 องศาเซลเซียส ถ้าพิจารณาอุณหภูมิที่เหมาะสมในช่วงวันหนึ่งๆพบว่าอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงของพืชจะใกล้เคียงกับอุณหภูมิของอากาศช่วงเวลากลางวันในบริเวรที่พืชนั้นๆ เจริญเติบโต ยกเว้นในเขตหนาวอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงของพืชอาจสูงกว่าอุณหภูมิอากาศ และอุณหภูมิของใบพืชขณะที่ได้รับแสงก็มักจะสูงกว่าอุณหภูมิของอากาศด้วย
สำหรับพืชที่อยู่ในเขตเดียวกันของโลก โดยทั่วไปอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงของพืช C3จะต่ำกว่าอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงของพืช C4
ในการทดลองให้พืช C3 อยู่ในสภาพที่มีความเข้มข้นของคาร์บอนไดออกไซด์ถึงจุดอิ่มตัวจะทำให้โฟโตเรสไพเรชันเกิดได้น้อยมาก จึงพบว่าอุณหภูมิที่เหมาะสมต่อการสังเคราะห์ด้วยแสงสูงมากขึ้นกว่าที่พบในสภาพที่มีความเข้มข้นของคาร์บอนไดออกไซด์ระดับปกติ
นอกจากปัจจัยต่างๆ ที่กล่าวมาแล้ว ใบพืชที่เพิ่งผลิออกขากต้นพืชที่เจริญเติบโตน่าจะมีกระบวนการแมเทบอลิซึมในใบต่างกัน ดังนั้นเป็นไปได้หรือไม่ว่าอายุของใบก็เป็นปัจจัยหนึ่งที่มีผลต่อการสังเคราะห์ด้วยแสง
อายุใบ
ในพืชที่อ่อนหรือแก่เกินไปจะมีความสามารถในการสังเคราะห์ด้วยแสงต่ำกว่าใบพืชที่เจริญเติบโตเต็มที่ี่เพราะว่าใบที่อ่อนเกินไปการพัฒนาของคลอโรพลาสต์ยังไม่เจริญเต็มที่ส่วนใบที่แก่เกินไปจะมีการสลายตัวของกรานุมและคลอโรฟิลล์มีผลทำให้การสังเคราะห์ด้วยแสงของพืชลดลงไปด้วย
จากที่ได้ศึกษมาแล้วว่าปริมาณน้ำในดินและความชื้นในอากาศมีผลต่อการปิเเปิดปากใบของพืชการปิดเปิดปากใบจะมีผลต่อการแพร่ของแก๊สออกซิเจนและแก๊สคาร์บอนไดออกไซด์ที่แพร่เข้าออกจากปากใบดังนั้นปริมาณน้ำที่พืชได้รับน่าจะมีผลต่อการสังเคราะห์ด้วยแสงด้วย
ปริมาณน้ำที่พืชได้รับ
เมื่อพืชขาดน้ำอัตราการสังเคราะห์ด้วยแสงจะลดลง เนื่องจากปากใบของพืชจะปิดเพื่อลดการคายน้ำซึ่งทำให้แก๊สคาร์บอนไดออกไซด์แพร่เข้าสู่ปากใบได้ยาก
สำหรับในสภาพน้ำท่วมหรือดินชุ่มไปด้วยน้ำ ทำให้รากพืชขาดแก๊สออกซิเจนที่ใช้ในการหายใจซึ่งมีผลกระทบต่ออัตราการสังเคราะห์ด้วยแสง
ธาตุอาหาร
จากที่ศึกษามาแล้วจะทราบว่า สิ่งมีชีวิตที่สังเคราะห์ด้วยแสงจะต้องมีมารมีที่ใช้ในกระบวนการสังเคราะห์ด้วยแสง โดยเฉพาะคลอโรฟิลล์และยังต้องมีธาตุอาหารที่จำเป็นต่อกระบวนการสังเคราะห์คลอโรฟิลล์ ธาตุแมกนีเซียมและไนโตรเจนเป็นธาตุสำคัญในองค์ประกอบของคลอโรฟิลล์ การขาดธาตุเหล่านี้ส่งผลให้พืชเกิดอาการใบเหลืองซีดที่เรียกว่า คลอโรซิส (chlorosis) เนื่องจากใบขาดคลอโรฟิลล์
ธาตุเหล็กจำเป็นต่อการสร้างคลอโรฟิลล์และเป็นองค์ประกอบของไซโทโครมซึ่งเป็นตัวถ่ายอิเล็กตรอนส่วนธาตุแมงกานีสและคลอรีนจำเป็นต่อกระบวนการแตกตัวของน้ำในปฏิกิริยาการสังเคราะห์ด้วยแสงการขาดธาตุอาหารต่างๆ ที่กล่าวมานี้จะมีผลให้อัตราการสังเคราะห์ด้วยแสงลดลงด้วย

กลไกการเพิ่มความเข้มข้นคาร์บอนไดออกไซด์ของพืชซีเอเอ็ม ( CAM )

พืชบางชนิดเจริญได้ในที่แห้งแล้งซึ่งในเวลากลางวันสภาพแวดล้อมจะมีความชื้นต่ำและอุณหภูมิสูง ทำให้พืชสูญเสียน้ำทางปากใบมาก พืชที่เจริญในพื้นที่แห้งแล้งแล้วจึงมีวิวัฒนาการที่จะลดหารสูญเสียน้ำ โดยการลดรูปของใบให้มีขนาดเล็กลง และปากใบปิดในเวลากลางวัน หรือมีลำต้นอวบน้ำเพื่อจะสงวนรักษาน้ำไว้ใช้้ในกระบวนต่าง ๆ
ในเวลากลางคืนอากาศมีอุณหภูมิต่ำและความชื้นสูงปากใบพืชดังกล่าวข้างต้นจึงเปิด แก๊สคาร์บอนไดออกไซด์จะเข้าทางปากใบไปยังเซลล์มีโซฟิลล์ สารประกอบ PEP จะตรึงคาร์บอนไดออกไซด์ไว้แล้วเปลี่ยนเป็นสาร OAA ซึ่ง OAA นี้จะเปลี่ยนเป็นสารที่มีคาร์บอน 4 อะตอม ชื่อ กรดมาลิก ( malic acid ) แล้วเคลื่อนย้ายมาสะสมไว้ในแวคิวโอล ในเวลากลางวันเมื่อเริ่มมีแสงปากใบจะปิดเพื่อลดการสูญเสียน้ำ กรดมาลิกจะถูกลำเลียงจากแวคิวโอลเข้าสู่คลอโรพลาสต์ พืชจะมีกระบวนการปล่อยคาร์บอนไดออกไซด์จากกรดมาลิกที่สะสมไว้ และคาร์บอนไดออกไซด์จะถูกตรึงเข้าสู่วัฏจักรคัลวินตามปกติ และเนื่องจากการปิดปากใบทำให้คาร์บอนไดออกไซด์แพร่ออกนอกใบได้ยาก ความเข้มข้นของคาร์บอนไดออกไซด์ในเซลล์สูง อัตราโฟโตเรสไพเรชันจึงลดลงอย่างมาก เมื่อมีแสงกรดมาลิกที่ปล่อยออกมาจากแวคิวโอลจะไปยับยั้งเอนไซม์ที่กระตุ้นปฏิกิริยาตรึงคาร์บอนไดออกไซด์ของ PEP แต่ในเวลากลางคืนกรดมาลิกจะถูกลำเลียงไปเก็บไว้ในแวคิวโอลเอนไซม์ที่เร่งปฏิกิริยาตรึงคาร์บอนไดออกไซด์ของ PEP จึงทำงานได้เนื่องจากกระบวนการตรึงคาร์บอนไดออกไซด์แบบนี้เป็นกระบวนการที่พบได้ในครั้งแรกในพืชตระกูลครัสซูลาซี (Crussulaceae ) เช่นกระบองเพชร จึงเรียกว่าพืชซีเอเอ็มแต่ในปัจจุบันพบว่าสามารถพบได้ในพืชวงศ์อื่นอีก เช่น กล้วยไม้ สับปะรด ว่านหางจระเข้ และศรนารายณ์ เป็นต้น
โดยทั่วไปพืชซีเอเอ็มจะสูญเสียน้ำ 50 – 100 กรัม ต่อการตรึงคาร์บอนไดออกไซด์หนึ่งกรัม ในขณะที่พืชC4 และ C3 จะต้องเสียน้ำมากถึง 250 – 300 กรัม และ 400 – 500 กรัม ตามลำดับดังนั้นพืชซีเอเอ็มจึงสามารถมีชีวิตรอดอยู่ในสภาพแวดล้อมที่มีน้ำน้อยหรือขาดแคลนน้ำได้ดีกว่าพืช C4 หรือพืช C3
เมื่ออยู่ในสภาพแวดล้อมที่เหมาะสม พืชบางชนิดสังเคราะห์ด้วยแสงโดยใช้วัฏจักรคัลวินเพียงอย่างเดียวแต่ถ้าอยู่ในสภาพแสดล้อมที่ไม่เหมาะสม เช่น การขาดแคลนน้ำ อุณหภูมิสูง หรือดินเค็ม เป็นต้น พืชจะแส

กลไกการเพิ่มความเข้มข้นของคาร์บอนไดออกไซด์ในพืช C4

จากที่ทราบมาแล้วว่าในปฏิกิริยาตรึงคาร์บอนไดออกไซด์ของกระบวนการสังเคราะด้วยแสงในวัฏจักรคัลวินของพืชได้สารประกอบคงตัวชนิดแรกคือ PGA ซึ่งเป็นสารประกอบที่มีคาร์บอน 3 อะตอมเรียกพืชชนิดนี้ว่า พืช C3 แต่มีพืชบางชนิดในเขตร้อนมีวิวัฒนาการที่สามารถตรึงคาร์บอนไดออกไซด์ นอกเหนือจากวัฏจักรคัลวิน และได้สารประกอบคงตัวชนิดแรกซึ่งมีคาร์บอน 4 อะตอม และไม่ใช่ PGAจึงเรียกพืชที่มีกระบวนการเช่นนี้ว่า พืช C4
โครงสร้างของใบที่จำเป็นต่อการตรึงคาร์บอนไดออกไซด์




จากภาพจะเห็นว่าใบพืชในภาพ ก เป็นใบพืชที่พบคลอโรพลาสต์มากในเซลล์มีโซฟิลล์ จัดเป็นพืช C3 ส่วนใบพืชในภาพ ข นอกจากจะพบคลอโรพลาสต์ในเซลล์มีโซฟิลล์แล้วในเซลล์บันเดิลชีทก็ยังพบคลอโรพลาสต์อยู่ด้วย พืชลักษณะนี้จัดเป็นพืช C4 พืช C3 มีปริมาณร้อยละ 85 ของพืชทุกชนิด ส่วนใหญ่เป็นพืชที่มีถิ่นกำเนิดในเขตอบอุ่น ส่วนพืช C4 เป็นพืชที่มีถิ่นกำเนิดในเขตร้อนหรือกึ่งร้อน ซึ่งมีประมาณ 1500 สปีชีส์ เช่น ข้าวโพด ข้าวฟ่าง อ้อย หญ้าแพรก หญ้าแห้วหมู ผักโขมจีน และบานไม่รู้โรย เป็นต้น
นอกจากนี้ในพืช C4 เซลล์มีโซฟิลล์และเซลล์บันเดิลชีทที่อยู่ติดกันจะมีพลาสโมเดสมาตาเชื่อมระหว่างเซลล์ทั้งสองและทำหน้าที่เป็นทางผ่านและลำเลียงสารจากกระบวนการเมแทบอลิซึมระหว่างเซลล์มีโซฟิลล์และเซลล์บันเดิลชีท
วัฏจักรของพืช C4



ครั้งแรกโดยกรดฟอสโฟอีนอลไพรูวิก ( phosphoenolpyruvic acid : PEP ) ซึ่งเป็นสารที่มีีคาร์บอน 3 อะตอม ตรึงคาร์บอนไดออกไซด์เป็นสารที่มีคาร์บอน 4 อะตอม เรียกว่า กรดออกซาโลแอซิติก (oxaloacetic acid :OAA ) ซึ่งเป็นสารประกอบคงตัวชนิดแรกที่ได้จากปฏิกิริยาตรึงคาร์บอนไดออกไซด์ จึงเรียกพืชที่มีกระบวนการเช่นนี้ว่า พืช C4
ครั้งที่สอง OAA มีการเปลี่ยนแปลงหลายขั้นตอนและลำเลียงผ่านพลาสโมเดสมาตามายังเซลล์บันเดิลชีทสารคาร์บอน 4 อะตอม ที่ลำเลียงมานี้จะปล่อยคาร์บอนไดออกไซด์ให้กับ RuBP ในวัฏจักรคัลวินกลายเป็นสารที่มีคาร์บอน 3 อะตอมซึ่งจะลำเลียงกลับมาที่สโตรมาของเซลล์มีโซฟิลล์และเปลี่ยนแปลงเป็นสาร PEPเพื่อจะตรึงคาร์บอนไดออกไซด์อีกครั้งหนึ่ง
วัฏจักรคาร์บอนของพืช C4ช่วยให้พืชสามารถนำคาร์บอนไดออกไซด์ในบรรยากาศและในเซลล์มีโซฟิลล์ที่มีความเข้มข้นต่ำเข้าสู่บันเดิลชีททำให้ความเข้มข้นของคาร์บอนไดออกไซด์ในเซลล์บันเดิลชีทสูงมากขึ้นเมื่อเทียบกับความเข้มข้นของออกซิเจนทำให้ปฏิกิริยาการตรึงออกซิเจน โดย RuBP เกิดได้น้อย พืช C4 จึงมีการสูญเสียคาร์บอนอะตอมจากโฟโตเรสไพเรชันน้อยมากจนวัดไม่ได้ในสภาพปกติ

โฟโตเรสไพเรชัน

การตรึงคาร์บอนไดออกไซด์ของ RuBP ต้องใช้เอนไซม์รูบิสโกซึ่งอยู่ในสโตรมาของคลอโรพลาสต์ เอนไซม์นี้นอกจากกระตุ้นให้ RuBP ตรึงคาร์บอนไดออกไซด์แล้วยังสามารถกระตุ้นให้ RuBP ตรึงออกซิเจนได้อีกด้วย จากสมบัติเอนไซม์รูบิสโกดังกล่าวจึงทำให้ความสามารถในการตรึงคาร์บอนไดออกไซด์ในการสังเคราะห์ด้วยแสงของพืชหลายชนิดลดลง เนื่องจากออกซิเจนจะแข่งขันกับคาร์บอนไดออกไซด์ในการทำปฏิกิริยากับ RuBP
พืชตรึงออกซิเจนด้วย RuBP ซึ่ง RuBP จะถูกสลายเป็นสารประกอบคาร์บอน 2 อะตอม และกระบวนการทางชีวเคมีที่พืชใช้ในการนำคาร์บอนนี่กลับมาใช้สร้าง RuBP ขึ้นใหม่จะมีการสูญเสียคาร์บอนในรูปคาร์บอนไดออกไซด์บางส่วน ดังนั้นโดยรวมจะพบทั้งการตรึงออกซิเจนและคาร์บอนไดออกไซด์ของพืชในขณะที่ได้รับแสง จึงเรียกว่า โฟโตเรสไพเรชัน (photorespiration) ซึ่งต่างจากการหายใจ หรือการสลายสารอาหารตามปกติ เพราะโฟโตเรสไพเรชันจะเกิดขึ้นเฉพาะในเซลล์ที่มีคลอโรพลาสต์เท่านั้น นอกจากนี้ปฏิกิริยาเคมีต่าง ๆ ที่เกี่ยวข้องกับโฟโตเรสไพเรชันก็แตกต่างจากการสลายอาหารที่เกิดขึ้นในเซลล์
ในสภาพอากาศปกติการตรึงคาร์บอนไดออกไซด์และการตรึงออกซิเจนดำเนินไปพร้อม ๆ กันโดยมีสัดส่วนการตรึงคาร์บอนไดออกไซด์ต่อการตรึงออกซิเจนในอัตราส่วน 3 ต่อ 1 แต่สัดส่วนนี้อาจเปลี่ยนแปลงได้ขึ้นอยู่กับความเข้มข้นของคาร์บอนไดออกไซด์และออกซิเจนในเซลล์ ปัจจุบันมีการทดลองที่แสงให้เห็นว่าโฟโตเรสไพเรชันจะช่วยป้องกันความเสียหายให้แก่ระบบการสังเคราะห์ด้วยแสง โดยเฉพาะอย่างยิ่งเมื่อใบพืชอยู่ในสภาพที่ได้รับแสงมากแต่มีปริมาณคาร์บอนไดออกไซด์น้อย เช่น ในกรณีที่ปากใบปิดเพราะพืชขาดน้ำ ทำให้พืชได้รับแสงมาก แต่มีคาร์บอนไดออกไซด์ให้ตรึงน้อย โฟโตเรสไพเรชันจะช่วยใช้สารพลังงานสูงที่สร้างได้มากเกินความต้องการจากปฏิกิริยาแสง

การสังเคราะห์ด้วยแสง

ก็ได้ทราบกันอยู่แล้วว่าว่าพืชมีหน้าที่สำคัญอย่างหนึ่งคือ สามารถนำพลังงานแสงมาตรึงคาร์บอนไดออกไซด์์และสร้างเป็นอาหารเก็บไว้ในรูปสารอินทรีย์ โดยกระบวนการสังเคราะห์ด้วยแสง นอกจานี้ยังทราบอีกว่าในใบพืชมีคลอโรฟิลล์ ซึ่งจำเป็นต่อการสังเคราะห์ด้วยแสง และผลผลิตที่ได้คือ คาร์โบไฮเดรต น้ำ และออกซิเจนและยังได้ทราบว่าพืชมีโครงสร้างที่เหมาะสมต่อการทำงานได้อย่างไร กระบวนการสังเคราะห์ด้วยแสง กระบวนการสังเคราะห์ด้วยแสงของพืช แบ่งเป็น 2 ขั้นตอนใหญ่ คือปฏิกิริยาแสงและปฏิกิริยาตรึงคาร์บอนไดออกไซด์ โครงสร้างของคลอโรพลาสต์ จากการที่ศึกษาด้วยการใช้กล้องจุลทรรศน์อิเล็กตอนและเทคนิคต่างๆ ทำให้เราทราบรายละเอียดเกี่ยวกับโครงสร้างและหน้าที่ของคลอโรพลาสต์มากขึ้น คลอโรพลาสต์ส่วนใหญ่ของพืชจะมีรูปร่างกลมรี มีความยาวประมาณ5 ไมโครเมตร กว้าง 2ไมโครเมตร หนา1-2 ไมโครเมตร ในเซลล์ของแต่ละใบจะมีคลอโรพลาสต์มากน้อยแตกต่างกันไปขึ้นอยู่กับชนิดของเซลล์และชนิดของพืช
คลอโรพลาสต์ ประกอบด้วยเยื่อหุ้ม 2 ชั้น ภายในมีของเหลวเรียกว่า สโตรมา มีเอนไซม์ที่จำเป็นสำหรับกระบวนการตรึงคาร์บอนไดออกไซด์ในการสังเคราะห์ด้วยแสงนอกจากนี้ด้านในของคลอโรพลาสต์ ยังมีเยื่อไทลาคอยด์ ส่วนที่พับทับซ้อนไปมาเรียกว่า กรานุม และส่วนที่ไม่ทับซ้อนกันอยู่เรียกว่าสโตรมาลาเมลลา สารสีทั้งหมดและคลอโรฟิลล์จะอยู่บนเยื่อไทลาคอยด์มีช่องเรียก ลูเมน ซึ่งมีของเหลวอยู่ภายใน นอกจากนี้ภายในคลอโรพลาสต์ยังมี DNA RNA และไรโบโซมอยู่ด้วย ทำให้คลอโรพลาสต์สามารถจำลองตัวเองขึ้นมาใหม่และผลิตเอนไซม์ไว้ใช้ในคลอโรพลาสต์ในคลอโรพลาสต์เองได้คล้ายกับไมโทคอนเดรีย์




สารสีในปฏิกิริยาแสง
เราสามารถพบได้ว่าสาหร่ายสไปโรไจราสังเคราะห์ด้วยแสงได้ดีที่แสงสีน้ำเงินและแสงสีแดง
สารสีที่พบในสิ่งมีชีวิตที่สังเคราะห์แสงมีได้หลายชนิด พืชและสาหร่ายซึ่งเป็นสิ่งมีชีวิตประเภทยูคาริโอตสารสีต่างๆจะอยู่ในคลอโรพลาสต์ แต่ไซยาโนแบคทีเรียและกรีนแบคทีเรียจะพบสารสีต่างๆ และศูนย์กลางปฏิกิริยาแสงแทรกอยู่ในเยื่อหุ้มเซลล์ หรือองค์ประกอบอื่นที่เปลี่ยนแปลงมาจากเยื่อหุ้มเซลล์ โดยมีส่วนของเยื่อหุ้มเซลล์ที่ยื่นเข้าไปในไซไทพลาซึมทำหน้าที่แทนเยื่อชั้นในของคลอโรพลาสต์
สิ่งมีชีวิตแต่ละชนิดที่สังเคราะห์แสงได้ มีสารสีอยู่หลายประเภท ซึ่งเราได้พบว่า พืชและสาหร่ายสีเขียวมีคลอโรฟิลล์ 2 ชนิด คือ คลอโรฟิลล์ เอ และคลอโรฟิลล์ บี นอกจากคลอโรฟิลล์แล้วยังมีแคโรทีนอยด์ และพบว่าสาหร่ายบางชนิดมี ไฟโคบิลิน
แคโรทีนอยด์เป็นสารประกอบประเภทไขมัน ซึ่งประกอบไปด้วยสาร 2 ชนิด คือ แคโรทีน เป็นสารสีแดงหรือสีส้ม และแซนโทฟิลล์ เป็นสารสีเหลืองหรือสีน้ำตาล แคโรทีนอยด์มีอยู่ในสิ่งมีชีวิตทุกชนิด ที่สังเคราะห์ด้วยแสงได้ในพืชชั้นสูงพบว่าสารสีเหล่าสนี้อยู่ในคลอโรพลาสต์
ไฟโคบิลิน มีในสาหร่ายสีแดงและไซยาโนแบคทีเรีย ซึ่งไฟโคบิลินประกอบด้วยไฟโคอีรีทรินซึ่งดูดแสงสีเหลืองและเขียว และไฟโคไซยานินที่ดูดแสงสีเหลืองและสีส้ม
สารเหล่านี้ทำหน้าที่รับพลังงานแสงแล้วส่งต่อให้คลอโรฟิลลล์ เอ ที่เป็นศูนย์กลางปฏิกิริยาของระบบแสงอีกต่อหนึ่ง กลุ่มสารสีที่ทำหน้าที่รับพลังงานแล้วส่งต่ออีกทีให้คลอโรฟิลล์ เอ ซึ่งเป็นศูนย์กลางของปฏิกิริยาเรียกว่าแอนเทนนา
สิ่งที่น่าสงสัยคือ มีการส่งต่อพลังงานแสงจากโมเลกลุของสารีต่างๆไปยังคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยาของได้ได้อย่างไร
อิเล็กตรอนที่เคลื่อนที่ไปรอบๆ นิวเคลียสของอะตอมของสารสีมีอยู่หลายระดับ อิเล็กตรอนเหล่านี้สามารถเปลี่ยนแปลงระดับได้ ถ้าได้รับพลังงานที่เหมาะสม เมื่อโมเลกุลของสารสีดูดพลังงานจากแสง ทำให้อิเล็กตรอนเคลื่อนที่อยู่ในสภาพปกติ ถูกกระตุ้นให้มีพลังงานมากขึ้น อิเล็กตรอนจะเคลื่อนไปอยู่ที่ระดับนอกู่
อิเล็กตรอนที่ถูกกระตุ้นจะอยู่ในสภาพเร่งเร้า สภาพเช่นนี้ไม่คงตัว อิเล็กตรอนจะถ่ายทอดพลังงานเร่งเร้าจากโมเลกุลสารสีหนึ่งไปยังโมเลกุลของสารสีอื่นๆต่อไป
อิเล็กตรอนเมื่อถ่ายทอดพลังงานไปแล้วก็จะคืนสู่ระดับปกติ โมเลกุลของคลอโรฟิลล์เอ ก็จะได้รับพลังงานโมเลกุลที่ถ่ายทอดมาจากสารสีต่างๆ รวมทั้งโมเลกลุของคลอโรฟิลล์ เอ ก็ได้รับพลังงานแสงเองอีกด้วย เมื่อคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยาได้รับพลังงานที่เหมาะสม จะทำให้อิเล็กตรอนหลุดจากโมเลกุล อิเล็กตรอนที่หลุดออกมานี้จะมีสารรับอิเล็กตรอน ที่ค้นพบว่า NADP เป็นสารที่มารับอิเล็กตรอนในภาวะที่มีคลอโรพลาสต์ และกลายเป็น NADPH
ที่เยื่อไทลาคอยด์จะมีกกลุ่มของสารสี เรียกว่าแอนเทนนาแต่ละหน่วยประกอบด้วยสารสีต่างๆ ประมาณ 300 โมเลกุล สารสีอื่นๆ ที่เป็นองค์ประกอบของแอนเทนนาจะได้รับพลังงานแสงแล้วถ่ายทอดไปตาลำดับคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยา
ระบบแสง ประกอบด้วยโปรตีนตัวรับอิเล็กตรอน ตัวถ่ายทอดอิเล็กตรอน และแอนเทนนา ระบบแสงI หรือPSI เป็นระบบแสงที่มีคลอโรฟิลล์ เอ ซึ่งเป็นศูนย์กลางปฏิกิริยารับ พลังงานแสงได้ดีที่สุดที่ความยาวคลื่น 700 นาโนเมตร จึงเรียกว่า P700 และรับบแสงII หรือ PS II ซึ่งมีคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางปฏิกิริยารับพลังงานแสงได้ดีที่สุดที่ความยาวคลื่น 680 นาโนเมตร เรียกปฏิกิริยาแสงนี้ว่า P680
ปฏิกิริยาแสง
พืชดูดกลืนแสงไว้ในคลอโรพลาสต์ ในขั้นตอนที่เรียกว่า ปฏิกิริยาแสงให้เป็นพลังงานเคมีที่พืชสามารถนำไปใช้ได้ในรูป ATP และ NADPH
บนเยื่อไทลาคอยด์จะมีระบบแสง I ระบบแสง II และโปรตีนทำหน้าที่รับและถ่ายทอดอิเล็กตรอนอยู่ ซึ่งจำลองการจัดเรียงตัว
พลังงานแสงที่สารต่างๆ ดูดกลืนไว้จะทำให้อิเล็กตรอนของสารสีมีระดับพลังงานสูงขึ้น และสามารถ่ายทอดไปได้หลายรูปแบบ สารสีในแอนเทนนาจะมีการท่ายทอดพลังงานที่ดูดกลืนไว้ จากสารสีโมเลกุลหนึ่งไปยังสารสีีอีกโมเลกุลหนึ่ง จนกระทั่งโมเลกุลของคลอดรฟิลล์ เอ ที่เป็นศูนย์กลางของระบบปฏิกิริยาแสง พลังงานดังกล่าวจะกระตุ้นให้อิเล็กตรอนของคลอโรฟิลล์ เอ มีพลังงานสูงขึ้น และถ่ายทอดอิเล็กตรอนไปยังตัวรับอิเล็กตรอนเป็นการเปลี่ยนปลังงานสงให้มาอยู่ในรูปของพลังงานเคมี นอกจากนี้พลังที่ถูกดูดกลืนไว้อาจเปลี่ยนมาอยู่ในรูปของพลังงานความร้อน การถ่ายทอดอิเล็กตรอนเกิดได้ 2 ลักษณะ คือการถ่ายทอดอิเล็กตรอนแบบไม่เป็นวัฏจักรและการถ่ายทออิเล็กตรอนแบบเป็นวัฏจักร

ถ่ายทอดอิเล็กตรอนแบบไม่เป็นวัฏจักร





พลังงานสงที่สสารสีรับไว้ถูกส่งผ่านไปยังปฏิกิริยาของระบบแสง และทำให้โมเลกุลของคลอโรฟิลล์ เอ ที่ระบบแสง I และระบบแสง II ถูกระตุ้นจึงปล่อยอิเล็กตรอนให้กับโมเลกุลของสารที่เป็นตัวรับอิเล็กตรอนต่อไปอิเล็กตรอนที่หลุดออกไปจากคลอโรฟิลล์ เอ ในระบบแสง I จะไม่ย้อนกลับสู้ระบบแสงI อีกครั้ง เพราะมีNADPมารับอิเล็กตรอนกลายเป็น NADPH สำหรับคลอดรฟิลล์ เอ ในระบบแสง II สุญเสียอิเล็กตรอนไปมีผลให้สามารถดึงอิเล็กตรอนของน้ำออกมาแทนที่ ซึ่งทำให้โมเลกุลของนำแยกสลายเป็นออกซิเจนและโปรตอน
อิเล็กตรอนที่ถูกถ่ายทอดในลำดับต่างๆ ที่กล่าวมาข้างต้นทำให้เกิดการสะสมโปรตอนในลูเมนจนเกิดความแตกต่างของระดับโปรตอนระหว่างสโตรมากับลูเมน โปรตอนในลูเมนจะถูกส่งผ่านไปยังสโตรมาโดยการทำงานของATP ขึ้นในสโตรมา และมีการปล่อยโปรตอนจากลูเมนสู่สโตรมา

การถ่ายทอดอิเล็กตรอนแบบเป็นวัฏจักร
เป็นการถ่ายทอดอิเล็กตรอนที่เกิดขึ้น เมื่อระบบแสงIได้รับพลังงานแสง สารสีในระบบแสง I จะรับพลังงานแสงถ่ายทอดพลังงานไปยังคลอโรฟิลล์ เอ ที่เป็นศูนย์กลางของปฏิกิริยา ทำให้อิเล็กตรอนของคลโรฟิลล์ เอมีพลังงานสูงขึ้นจึงหลุดออกมาซึ่งจะมีตัวรับอิเล็กตรอนแล้วถ่ายทอดออกมายังระบบไซโทโครมคอมเพล็กซ์ จากนั้นจะส่งผ่านตัวนำอิเล็กตรอนต่างๆ อิเล็กตรอนก็จะกลับมายังคลอโรฟิลล์ ที่เป็นศูนย์กลางของปฏิกิริยา ของระบบแสง I อีกครั้งหนึ่ง ในการเคลื่อนย้ายอิเล็กตรอนครั้งนี้จะทำให้โปรตอนเคลื่อนย้ายจากสโตรมาเข้าสู่ลูเมนเป็นผลทำให้เกิดความแตกต่างความเข้มข้นของโปรตอนระหว่างลูเมนกับสโตรมาและเมื่อสะสมมากขึ้น เป็นแรงผลักดันให้เกิดการสังเคราะห์ ATP โดยไม่มี NADPH และออกซิเจน เกิดขึ้น
ปฏิกิริยาตรึงคาร์บอนไดออกไซด์



จากการทดลองของคัลวินและคณะสันนิษฐานว่า น่าจะมีสารประกอบคาร์บอน 2 อะตอม ซึ่งเมื่อรวมตัวกับคาร์บอนไดออกไซด์ จะได้ PGA แต่หลังจากการค้นหาไม่ค้นพบสารประกอบที่มีคาร์บอน 2 อะตอมอยู่เลย เขาจึงตรวจหาสารประกอบใหม่ที่จะมีมารวมกับ CO เป็น PGA จากการตรวจสอบพบสารประกอบจำพวกน้ำตาลที่มีคาร์บอน 5 อะตอม คือ ไรบูโลสบิสฟิสเฟต เรียกย่อๆว่า RuBP เมื่อรวมตัวกับคาร์บอนไดออกไซด์เกิดเป็นสารประกอบตัวใหม่ที่มีคาร์บอน 6 อะตอม แต่สารนี้ไม่อยู่ตัว จะสลายกลายเป็นสารประกอบที่มีคาร์บอน 3 อะตอม คือ PGA จำนวน 2 โมเลกุล
นอกจากนี้คัลวินและคณะ ได้พบปฏิกิริยาเหล่านี้ เกิดหลายขั้นตอนต่อเนืองไปเป็นวัฏจักรในปัจจุบันเรียกวัฏจักรของปฏิกิริยานี้ว่า วัฏจักรคัลวิน
การตรึงคาร์บอนไดออกไซด์นี้เป็นกระบวนการที่พืชนำพลังงานเคมีที่ได้จากปฏิกิริยาแสงในรูปATP และADPH มาใช้ในการสร้างสารอินทรีย์ คาร์บอนไดออกไซด์จะถูกรีดิวส์เป็นน้ำตาลไตรโอสฟอสเฟตในวัฏจักรคัลวิน วัฏจักรคัลวินเป็นปฏิกิริยาที่เกิดขึ้นในสโตรมาของคลอโรพลาสต์ ประกอบ 3 ขั้นตอนใหญ่ คือ คาร์บอกซิเลชัน รีดักชันและ รีเจเนอเรชัน
ปฏิกิริยาขั้นที่ 1 คาร์บอกซิเลชัน เป็นปฏิกิริยาตรึงคาร์บอนไดออกไซด์ คาร์บอนไดออกไซด์จะเข้าสู่วัฏจักรคัลวินโดยการทำปฏิกิริยากับ RuBP มีเอนไซม์ไรบูโลส บิสฟอสเฟต คร์บอกซิเลส ออกจีเจเนส เรียกย่อๆว่า รูบิสโก เป็นคะตะลิสต์ เมื่อ RuBP ซึ่งเป็นสารที่มีคาร์บอน 5 อะตอม เข้ารวมกับคาร์ไดออกไซด์์ได้สารประกอบใหม่ที่มีคาร์บอน 6 อะตอม เป็นสารที่ไม่คงตัวและจะเปลี่ยนเป็นสารประกอบ ฟอสโฟกลีเซอเรต มีคาร์บอน 3 อะตอม จำนวน 2 โมเลกุล ซึ่งถือได้ว่าเป็นสารประกอบที่มีคาร์บอนตัวแรกที่คงตัวในวัฏจักรคัลวิน
ปฏิกิริยาขั้นที่ 2 รีดักชัน ในขั้นตอนนี้แต่ละโมเลกุลของ PGA จะรับหมู่ฟอสเฟตจาก ATP กลายเป็น 1,3 บิสฟอสโฟกลีเซอเรต ซึ่งรับอิเล็กตรอนจาก NADPH และถูกเปลี่ยนเป็น กลีเซอรัลดีไฮด์ 3-ฟอสเฟต เรียกย่อๆว่าG3P หรือ PGAL เป็นน้ำตาลคาร์บอน 3 อะตอม
ปฏิกิริยาขั้นที่ 3 รีเจเนอเรชัน เป็นขั้นตอนที่จะสร้าง RuBP ขึ้นมาใหม่ เพื่อกลับไปรับคาร์บอนไดออกไซด์อีกครั้งหนึ่ง ในการสร้างRuBP ขึ้นมาใหม่ เพื่อกลับไปรับคาร์บอนไดออกไซด์อีกครั้งหนึ่ง ในการสร้าง RuBP ซึ่งมีคาร์บอน 5 อะตอมซึ่งต้องอาศัย G3P ซึ่งเป็นสารที่มีคาร์บอน 3 อะตอม จึงเปลี่ยนไปเป็น RuBP และขั้นตอนนี้ ต้องอาศัยพลังงานจาก ATP จากปฏิกิริยาแสง ส่วน G3P บางโมเลกุลถูกนำไปสร้างกลูโคส และสารประกอบอินทรีย์อื่นๆ
พืชที่สังเคราะห์ด้วยแสงมีสารประกอบคงตัวชนิดแรกที่ได้จากปฏิกิริยาการตรึงคาร์บอนไดออกไซด์เป็นสารที่มีคาร์บอน 3 อะตอม เรียกว่าพืช C3
น้ำตาลที่ได้จากวัฏจักรคัลวินถูกนำไปสร้างเป็นน้ำตาลไดแซ็กคาไรด์ เช่น ซูโครส เพื่อลำเลียงไปสู่ส่วนต่างๆที่พืชต้องการจะใช้ต่อไป หรืออาจจะถูกเก็บสะสมไว้ในรูปของเม็ดแป้งในคลอโรพลาสต์หรือนำไปใช้ในกระบวนการอื่นๆภายในเซลล์ เช่น กระบวนการสลายอาหาร การสร้างสารอินทรีย์อื่นๆ เช่น กรดไขมัน กรดอะมิโน
ปฏิกิริยาตรึงคาร์บอนไดออกไซด์เป็นปฏิกิริยาที่ไม่จำเป็นต้องใช้แสงจริงหรือไม่ ในอดีตเรียกว่าปฏิกิริยาที่ไม่ใช้แสง เราคิดว่าไม่ต้องใช้แสง แต่ปัจจุบันพบว่าแสงมีบทบาทที่สำคัญ ซึ่งการตรึงคาร์บอนไดออกไซด์จะเริ่มต้นหลังจากพืชได้รับแสงช่วงหนึ่ง อัตราการสังเคราะห์แสงจะเร่อมตามระยะเวลาที่เพิ่มขึ้น เนืองจากแสงกระตุ้นการทำงานของเอนไซม์หลายชนิดที่ใช้ในวัฏจักรคัลวิน เช่น เอนไซม์รูบิสโก นอกจากนี้แสงยังมีอิทธิพลต่อการลำเลียงสารประกอบคาร์บอน 3 อะตอม ออกจากคลอโรพลาสต์ และมีอิทธิพลต่อการเคลื่อนที่ของไอออนต่างๆ
สรุปโดยย่อการสังเคราะห์ด้วยแสงของพืชประกอบด้วย 2 ส่วนใหญ่ ได้แก่ กระบวนการเปลี่ยนพลังงานแสงให้เป็นพลังงานแคมีโดยการสร้าง ATPและNADPH ด้วยปฏิกิริยา จากนั้นจะนำ ATPและ NADPH มาใช้ในปฏิกิริยาการตรึงคาร์บอนไดออกไซด์เพื่อสร้างสารประกอบคาร์โบไฮเดรต

พื้นหลัง